C.U.SHAH UNIVERSITY
 Winter Examination-2015

Subject Name : Mechanics of Structures
Subject Code : 2TE03MST1
Branch : Diploma (Civil)
Semester: 3 Date : 10/12/2015 Time : 2:30 To 5:30 Marks : 70

Instructions:

(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Q-1

Attempt the following questions:
a) The change in length due to a tensile or compressive force acting on a body is given by
(A) $\frac{P l A}{E}$
(B) $\frac{P l}{A E}$
(C) $\frac{E}{p l A}$
(D) $\frac{A E}{P l}$
b) When a change in length takes place, the strain is known as
(A) linear strain
(B) lateral strain
(C) volumetric strain
(D) shear strain
c) The ratio of the lateral strain to the linear strain is called
(A) modulus of elasticity
(B) modulus of rigidity
(C) bulk modulus
(D) Poisson's ratio
d) A beam extending beyond the support is called
(A) simply supported beam
(B) fixed beam
(C) overhanging beam
(D) cantilever beam
e) A beam which is fixed at one end free at other is called
(A) simply supported beam
(B) fixed beam
(C) overhanging beam
(D) cantilever beam
f) When a cantilever beam is loaded with a point load at the free end, the bending moment diagram will be a
(A) horizontal straight line
(B) vertical straight line
(C) inclined straight line
(D) parabolic line
g) The point of contraflexure is a point where
(A) shear force changes sign
(B) bending moment changes sign
(C) shear force is maximum
(D) bending moment is maximum
h) In a simple bending of beams, the stress in the beam varies
(A) linearly
(B) parabolically
(C) hyperbolically
(D) elliptically
i) A section of beam is said to be in pure bending, if it is subjected to
(A) constant bending moment and constant shear force
(B) constant shear force and zero bending moment
(C) constant bending moment and zero shear force

(D) none of the above
j) The neutral axis of the cross section a beam is that axis at which the bending stress is
(A) zero
(B) minimum
(C) maximum
(D) infinity
k) The maximum deflection of a cantilever beam of length 1 with a point load W at the free end is
(A) $\frac{W l^{8}}{3 E I}$
(B) $\frac{W l^{8}}{8 E I}$
(C) $\frac{W l^{\mathrm{s}}}{16 E I}$
(D) $\frac{W l^{\mathrm{s}}}{48 E I}$

1) The maximum deflection of a cantilever beam of length 1 with a uniformly distributed load of w per unit length is
(A) $\frac{W l^{s}}{3 E I}$
(B) $\frac{W l^{8}}{8 E I}$
(C) $\frac{W l^{8}}{16 E I}$
(D) $\frac{W l^{8}}{48 E I}$
m) Transverse fillet welds are designed for
(A) tensile strength
(B) compressive strength
(C) shear strength
(D) bending strength
n) When a column is subjected to an eccentric load, the stress induced in the column will be
(A) direct stress only
(B) bending stress only
(C) shear stress only
(D) direct and bending stress both

Attempt any four questions from $\mathrm{Q}-2$ to $\mathrm{Q}-8$

(a) Draw shear force and bending moment diagram for the beam shown below.

(b) Draw shear force and bending moment diagram for the beam shown below.

Q-3 Attempt all questions

(a) A rectangular section of beam $200 \mathrm{~mm} \times 300 \mathrm{~mm}$ is simply supported over a span 4 m . It is subjected to UDL $12 \mathrm{kN} / \mathrm{m}$ over entire span. Find maximum bending stress and draw bending stress distribution diagram.
(b) A cantilever beam of span 3.0 m is carried u.d.l. of $40 \mathrm{kN} / \mathrm{m}$ for entire span. Cross section of beam is $200 \mathrm{~mm} \times 400 \mathrm{~mm}$. Draw a shear stress distribution diagram for maximum shear force.
Attempt all questions
(a) Explain core of section for different cross sections.
(b) A concrete block of a $2 \mathrm{~m} \times 2 \mathrm{~m}$ size in cross section weighing 100 kN is

Attempt all questions

(a) Derive the equation of bending $\frac{M}{I}=\frac{f}{Y}=\frac{E}{R}$
(b) A rectangular section is used as a simply supported beam of 4.0 m length. It carries a uniformly distributed load of $40 \mathrm{kN} / \mathrm{m}$ of full length along with a central point load of 30 kN . Find width and depth of section if maximum bending stress in the beam is not exceed $250 \mathrm{~N} / \mathrm{mm}^{2}$. The depth of section is twice the width of section.
Attempt all questions
(a) Define following terms:
(i) Shear stress, (ii) Bending stress, (iii) Modulus of elasticity, (iv) Principle of superposition of forces, (v) Modular ratio.
(b) Explain shear stresses distributions for circular section. Prove that $\tau_{\max }=1.33 \tau_{\text {ave }}$.05

(c) Write short note on efficiency of bolted joints.

Attempt all questions

(a) In a steel bar of $20 \mathrm{~mm} \times 20 \mathrm{~mm}$ cross section and 1600 mm length, a tensile load of 100 kN is applied. If $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2} \& \mu=0.25$, find change in length, width and thickness.
(b) A point is subjected to a tensile stress of $60 \mathrm{~N} / \mathrm{mm}^{2}$ and compressive stress of 40 $\mathrm{N} / \mathrm{mm}^{2}$ acting on two planes mutually perpendicular and also a shear stress of 15 $\mathrm{N} / \mathrm{mm}^{2}$. Determine the principal stresses as well as maximum shear stress.

Attempt all questions

(a) A simply supported beam is 5 m in span it is 300 mm x 400 mm in cross section it carries a central point load of 10 kN and uniformly distributed load of $15 \mathrm{kN} / \mathrm{m}$ over entire span calculate the maximum deflection. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
(b) Two plates of 20 mm thicknesses are to be connected by a single bolted lap joint(14) with bolts of 18 mm nominal diameter. Find the necessary pitch of the bolts. Take, $\mathrm{s}=10 \mathrm{~N} / \mathrm{mm}^{2}, f_{\mathrm{b}}=300 \mathrm{~N} / \mathrm{mm}^{2}$ and $f_{\mathrm{t}}=120 \mathrm{~N} / \mathrm{mm}^{2}$.

Q-1 Attempt the following questions:

a) બોડી ઉપર તાણ બળ કે દાળના કારણે લંબાઈમાં થતા ફે રફારનું સુત્ર જાાવો.
(A) $\frac{P l A}{E}$
(B) $\frac{P l}{A E}$
(C) $\frac{E}{P L A}$
(D) $\frac{A E}{P l}$
b) જયારે લંબાઈમાં ફેરફાર થાય તો તેવા સ્ટ્રેઈનને શું કહેવાય.
(A) linear strain (B) lateral strain
(C) volumetric strain
(D) shear strain
c) લેટરલ સ્ટ્રેઈન અને લીનીયર સ્ટ્રેઈનના ગુણોતરને શું કહેવાય.
(A) modulus of elasticity
(B) modulus of rigidity
(C) bulk modulus
(D) Poisson's ratio
d) બીમને ટેકાથી આગળ લંબાવવામાં આવે તો તેને શું કહેવાય.
(A) simply supported beam
(B) fixed beam
(C) overhanging beam
(D) cantilever beam
e) એક છેડે ફીક્ષ અને બીજા છેડે ફી હોય તેવા બીમને શું કહેવાય.
(A) simply supported beam
(B) fixed beam
(C) overhanging beam
(D) cantilever beam
f) કેન્ટીલીવર બીમ ઉ૫૨ ફી છેડે બીદુભાર લગાડવામાં આવે તો તેનો બેન્ડીગ મોમેન્ટ ડાયાગ્રામ કેવો બનશે.?
(A) horizontal straight line
(B) vertical straight line
(C) inclined straight line
(D) parabolic line
g) પોઈન્ટ ઓફ કોન્ટ્રાફલેક્ષર એ એવો પોઈન્ટ છે કે જયાં....
(A) shear force changes sign
(B) bending moment changes sign
(C) shear force is maximum
(D) bending moment is maximum
h) બીમના સીમ્પલ બેન્ડીગમાં બીમમાં થતા સ્ટ્રેસનો ફે રફાર કેવો હશે.?
(A) linearly
(B) parabolically
(C) hyperbolically
(D) elliptically
i) બીમના સેકશનને પ્યોર બેન્ડીગમાં છે તેમ કહેવાય, જો તેના ૫૨.....
(A) constant bending moment and constant shear force
(B) constant shear force and zero bending moment
(C) constant bending moment and zero shear force
(D) none of the above
j) બીમના કોસ સેકશનના ન્યુટ્રલ અક્ષિસ એ એવી અક્ષિસ છે કે જયાં બેન્ડીગ સ્ટ્રેસ......
(A) zero
(B) minimum
(C) maximum
(D) infinity
k) કેન્ટીલીવર બીમ કે જેની લંબાઈ L હોય અને તેના મુકત છેડા પર બીદુ ભાર W લાગતો હોય તો તેમાં થતું મહતમ વિચલન જાાવો.
(A) $\frac{W l^{\mathrm{s}}}{3 E I}$
(B) $\frac{W l^{s}}{8 E I}$
(C) $\frac{W l^{\mathrm{s}}}{16 E I}$
(D) $\frac{W l^{\mathrm{B}}}{48 E I}$

1) કેન્ટીલીવર બીમ કે જેની લંબાઈ L હોય અને તેના ૫૨ udl પ્રતિ એકમ લંબાઈમાં W લાગતો હોય તો તેમાં થતું મહતમ વિચલન જાાવો.
(A) $\frac{W l^{8}}{3 E I}$
(B) $\frac{W l^{\mathrm{s}}}{8 E I}$
(C) $\frac{W l^{\mathrm{s}}}{16 E I}$
(D) $\frac{W l^{8}}{48 E I}$
m) ટ્રાન્ઝવર્સ ફીલેટ વેલ્ડ શેના માટે ડીઝાઈન કરવામાં આવે છે.?
(A) tensile strength
(B) compressive strength
(C) shear strength
(D) bending strength

n) જો કોલમ ઉ૫૨ વિષમકેન્દ્રીય ભાર લગાડવામાં આવે તો કોલમમાં કેવા પ્રકારનું સ્ટ્રેસ ઉદભવશે.?
(A) direct stress only
(B) bending stress only
(C) shear stress only
(D) direct and bending stress both

Attempt any four questions from $\mathbf{Q}-2$ to $\mathbf{Q - 8}$

Q-6

Attempt all questions
(a) $200 \mathrm{~mm} \times 300 \mathrm{~mm}$ આડ છેદ ઘરાવતા સાદી રીતે ટેકવેલા બીમનો ગાળો 4 m છે. જો તેના ૫૨ UDL $12 \mathrm{kN} / \mathrm{m}$ નો u.d.l લગાવવામાં આવે તો ઉતપન્ન થતું મહતમ નમન પ્રતિબળ શોઘો તથા નમન પ્રતિબળ વિતરણ ડાયાગ્રામ દરો.
(b) 3.0 m લાંબા એક કેન્ટિલીવર બીમ ઉપર $40 \mathrm{kN} / \mathrm{m}$ નો સમવિતરીત ભાર લાગે છે. બીમના આડછેદનું માપ 200 mm x 400 mm છે. બીમના આડછેદમાં મહતમ કર્તનભાર માટે કર્તન પ્રતિબળ વિતરણ આલેખ દોરો.
Attempt all questions
(a) જુદા જુદા આઢછેદ માટે કોર ઓફ સેકશન સમજાવો.
(b) એક કોકીટના બ્લોકના માપ 2 mx 2 m ના અને તેનું વજન 100 kN છે તેના ૫૨ 20 kN . નો ઉતકેન્દ્રીત ભાર લાગે છે. જો બ્લોકમાં ઉદભવતી મહતમ પ્રતિબળની ત્રિવતા તેની લઘુતમ પ્રતિબળની ત્રીવતા કરતા 1.8 ગણી હોય તો લાગતા ઉતકેન્દ્રીત ભારની ઉતકેન્દ્રીતા શોધો.
(a) બેન્ડીગનું સુત્ર તારવો $\frac{M}{I}=\frac{f}{Y}=\frac{E}{R}$
(b) એક લંબચોરસ આડછેદ 4.0 m લંબાઈના સાદા ટેકવેલ બીમ માટે ઉપયોગમાં લીઘેલ છે.બીમ પર તેની પૂરે પૂરી લંબાઈ પર $40 \mathrm{kN} / \mathrm{m}$ નો સમવિતરીત ભાર તેમજ તેની લંબાઈની મઘ્યમાં 30 kN નો બિદુંભાર વહન કરે છે. જો બીમમાં મહતમ નમન પ્રતિબળની કિમંત $250 \mathrm{~N} / \mathrm{mm}^{2}$ થી વઘતી ન હોય તો બીમની ઉડાઈ તેમજ પહોળાઈ શોઘો. બીમની ઉંડાઈ તેની પહોળાઈ કરતા બમણી છે.

Attempt all questions

(a) નીચેનાની વ્યાખ્યા આપો:
(i) કર્તન પ્રતિબળ, (ii) નમન પ્રતિબળ, (iii) સ્થિતિ સ્થાપકતા માપાંક, (iv) બળોના પ્રત્યારોપણનો નિયમ, (v) મોડયુલર ગુણોતર.
(b) વતૃથાકાર આડછેદ માટે શિયર સ્ટ્રેસ વિતરણ સમજાવો અને $\tau_{\max }=1.33 \tau_{\text {ave. }}$ સાબિત

(b) આકૃતિમાં દર્શાવેલ બીમ માટે શીયર ફોર્સ ડાયાગ્રામ તેમજ બેન્ડીગ મોમેન્ટ ડાયાગ્રામ દોરો.

કરો.
(c) બોલ્ટેડ જોઈન્ટની એફીસીયન્સી વિશે નોંઘ લખો.

Q-8

Attempt all questions

(a) 1600 mm લંબાઈ તથા 20 mm x 20 mm આડછેદ ઘરાવતા સળીયા ૫૨ 100 kN નો

અક્ષીય ખેંચાણભાર લાગે છે. તેનાથી સળીયાની લંબાઈ, પહોળાઈ અને જાડાઈમાં થતો ફેરફાર શોઘો. $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ તथા $\mu=0.25$ લો.
(b) એક બિંદુ પર $60 \mathrm{~N} / \mathrm{mm}^{2}$ નું તાણ પ્રતિબળ અને $40 \mathrm{~N} / \mathrm{mm}^{2}$ નું દાળ પ્રતિબળ એકબીજાને કાટખુુે આવેલી સપાટી પર લાગે છે. તદઉપરાંત $15 \mathrm{~N} / \mathrm{mm}^{2}$ નું કર્તન પ્રતિબળ લાગે છે તો મુખ્ય પ્રતિબળો અને મહતમ કર્તન પ્રતિબળ શોઘો.

Attempt all questions

(a) એક સાદા ટેકવેલ બીમનો ગાળો 5 m છે. તેના આડછેદનું માપ $300 \mathrm{~mm} x 400 \mathrm{~mm}$ છે. જો

તેના પર 10 kN નો બિદુંભાર મઘ્યમાં અને $15 \mathrm{kN} / \mathrm{m}$ નો સમવિતરીત ભાર આખા ગાળા પર લાગતો હોયતો બીમનું મહતમ વિચલન શોઘો. $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ લો.
(b) 20 mm ની જાડાઈની બે પ્લેટોને સીગલ બોલ્ટેડ લેપ જોઈન્ટથી કનેકટ કરેલ છે. બોલ્ટનો નોમિનલ વ્યાસ 18 mm છે. બોલ્ટની જરૂરી પીચ શોઘો.
$\mathrm{s}=10 \mathrm{~N} / \mathrm{mm}^{2}, f_{\mathrm{b}}=300 \mathrm{~N} / \mathrm{mm}^{2}$ અને $f_{\mathrm{t}}=120 \mathrm{~N} / \mathrm{mm}^{2}$ લો.

